Supporting Information

Sequential Pericyclic Reaction of Ene-diallenes: An Efficient Approach to the Steroid Skeleton

Shinji Kitagaki,* Kazuhiro Ohdachi, Kumiko Katoh, Chisato Mukai*

Division of Pharmaceutical Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

Table of Contents

General	S 2
General procedure for the sequential pericyclic reaction	S2
Characterization data for compounds 11a, 15a	S2
Characterization data for compounds 11b, 15b	S 3
Characterization data for compound <i>trans</i> -11c	S 3
Characterization data for compounds cis-11c, 15c	S4
Characterization data for compound 23	S 4
Experimental procedure for preparation of 26	S5
¹ H and ¹³ C NMR spectra for compound 15b	S6
¹ H and ¹³ C NMR spectra for compound <i>cis</i> -11c'	S7
¹ H and ¹³ C NMR spectra for compound 15c'	S 8
¹ H NMR spectrum for compound 23	S 9
¹ H and ¹³ C NMR spectra for compound 26	S 10

General. Melting points are uncorrected. IR spectra were measured in CHCl₃. ¹H NMR spectra were taken in CDCl₃. CHCl₃ (7.26 ppm) for silyl compounds and tetramethylsilane (0.00 ppm) for compounds without a silyl group was used as an internal standard. ¹³C NMR spectra were recorded in CDCl₃ with CDCl₃ (77.00 ppm) as an internal standard. All reactions were carried out under a nitrogen atmosphere. Silica gel (silica gel 60, 230-400 mesh) was used for chromatography. Organic extracts were dried over anhydrous Na₂SO₄. PhSCl was prepared by literature procedure¹ and stored in the freezer.

General Procedure for the Pericyclic Reaction of 10a-c with PhSCl. To a solution of 10 (0.100 mmol) and Et_3N (0.10 mL, 0.70 mmol) in THF (8.5 mL) was gradually added a solution of PhSCl (86.5 mg, 0.600 mmol) in THF (1.5 mL) at room temperature, and the mixture was stirred for 1 h at that temperature and for 15 h at refluxing temperature. The reaction was quenched with water, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt to afford the crude sulfoxide. To a solution of the sulfoxide in CH_2Cl_2 (1.0 mL) was added *m*CPBA (4 eq) at room temperature. After stirring until complete disappearance of sulfoxide monitored by TLC, the reaction was quenched with saturated aqueous NaHCO₃ and saturated aqueous Na₂S₂O₃, and the mixture was extracted to dryness. The residue was chromatographed with CH_2Cl_2 (for **11a**) or hexane–AcOEt (for **11b,c**).

Methyl (4b*R**,8a*R**,9*R**)-1,4-bis(benzenesulfonyl)-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-9-carboxylate (11a). Colorless powder; m.p. 212-215 °C (CHCl₃–hexane); IR 1732, 1447, 1385, 1308 cm⁻¹; ¹H NMR (270 MHz) δ 7.95 (1H, d, *J* = 8.5 Hz), 7.86-7.79 (4H, m), 7.69-7.47 (7H, m), 3.72 (3H, s), 3.68-3.40 (2H, m), 2.89 (1H, dd, *J* = 17.8, 12.0 Hz), 2.54 (1H, dd, *J* = 12.3, 0.7 Hz), 2.28 (1H, ddd, *J* = 11.2, 11.2, 3.6 Hz), 1.83-1.58 (3H, m), 1.43-1.09 (5H, m); ¹³C NMR (67.8 MHz) δ 174.6, 145.4, 144.5, 142.6, 141.6, 139.5, 137.9, 133.9, 133.7, 129.3, 129.3, 128.2, 127.7, 126.3, 51.7, 45.11, 45.05, 43.9, 39.2, 31.9, 30.8, 27.1, 26.2; MS *m*/*z* 524 (M⁺, 9.6). Anal. Calcd for C₂₈H₂₈O₆S₂: C, 64.10; H, 5.38. Found: C, 63.79; H, 5.42.

Methyl(2E,7E)-8-[3,6-bis(benzenesulfonyl)-2-methylphenyl]-2,7-octadienoate(15a).Colorless needles: m.p. 119-120 °C (CH2Cl2-hexane); IR 1718, 1657, 1447, 1383, 1315 cm⁻¹; ¹HNMR (270 MHz) δ 8.31 (2H, s), 7.87-7.83 (2H, m), 7.74-7.70 (2H, m), 7.69-7.44 (6H, m), 6.92(1H, td, J = 15.8, 6.9 Hz), 6,26 (1H, d, J = 16.5 Hz) 5.81 (1H, td, J = 15.8, 1.7 Hz), 5.13 (1H, td,

J = 16.5, 6.6 Hz), 3.74 (3H, s), 2.33 (3H, s), 2.24-2.15 (2H, m), 2.08-2.00 (2H, m), 1.52-1.41 (2H, m);m); ¹³C NMR (67.8 MHz) δ 166.9, 148.5, 144.3, 143.9, 141.0, 140.7, 140.0, 139.0, 138.5, 133.6, 133.4, 129.3, 128.8, 128.3, 127.9, 127.8, 126.6, 123.7, 121.4, 51.4, 32.4, 31.5, 26.6, 17.5. Anal. Calcd for C₂₈H₂₈O₆S₂: C, 64.10; H, 5.38. Found: C, 63.82; H, 5.39.

(4b*R**,8a*S**)-1,4-Bis(benzenesulfonyl)-4b,5,6,7,8,8a,9,10-octahydrophenanthrene (11b). Colorless powder: m.p. 186-188 °C (CHCl₃–hexane); IR 1448, 1385, 1308 cm⁻¹; ¹H NMR (270 MHz) δ 7.94-7.82 (5H, m), 7.66-7.35 (7H, m), 3.33-3.26 (1H, m), 3.21-3.15 (1H, m), 2.73-2.62 (1H, m), 2.55-2.50 (1H, m), 1.85-1.54 (4H, m), 1.39-1.05 (6H, m); ¹³C NMR (67.8 MHz) δ 145.9, 145.6, 142.5, 141.9, 140.6, 140.0, 133.6, 133.5, 129.3, 129.2, 128.8, 128.0, 127.7, 126.0, 45.4, 42.9, 38.9, 34.0, 29.2, 27.8, 27.4, 26.6; MS *m*/*z* 466 (M⁺, 41.3). Anal. Calcd for C₂₆H₂₆O₄S₂: C, 66.92; H, 5.62. Found: C, 66.78; H, 5.72.

(*6E*)-7-[2,5-Bis(benzenesulfonyl)-6-methylphenyl]-1,2-epoxy-6-heptene (15b). Colorless oil: IR 1448, 1315 cm⁻¹; ¹H NMR (270 MHz) δ 8.30 (2H, s), 7.88-7.84 (2H, m), 7.76-7.72 (2H, m), 7.66-7.45 (6H, m), 6.27 (1H, d, *J* = 16.5 Hz), 5.16 (1H, td, *J* = 16.5, 6.6 Hz), 2.90-2.86 (1H, m), 2.75 (1H, dd, *J* = 4.9, 3.9 Hz), 2.45 (1H, dd, *J* = 4.9, 2.6 Hz), 2.33 (3H, s), 2.10-2.04 (2H, m), 1.59-1.41 (4H, m); ¹³C NMR (67.8 MHz) δ 144.4, 143.9, 141.1, 140.8, 140.1, 139.3, 138.6, 133.6, 133.3, 129.3, 128.8, 128.0, 127.9, 127.8, 126.6, 123.5, 51.9, 46.9, 32.8, 32.0, 24.8, 17.5; FAB MS *m/z* 483 (M⁺+1, 13.7). FABHRMS calcd for C₂₆H₂₇O₅S₂ 483.1299, found 483.1306.

Reaction of 10c. According to the general procedure, reaction of **10c** was performed. The crude oxidation product was passed through a short pad of silica gel with hexane–AcOEt (1:1) to afford a mixture of *trans*-**11c**, *cis*-**11c**, and **15c**. The product ratio was determined by HPLC analysis: KANTO CHEMICAL Mightysil Si 60 250–4.6 (5 μ m), hexane:AcOEt =2:1, 1.0 mL/min, t_R = 9.6 min (*trans*-**11c**), t_R = 10.7 min (*cis*-**11c**), t_R = 11.5 min (**15c**). Chromatography of the mixture with CHCl₃–hexane–*i*-Pr₂O (30:1:1) afforded pure *trans*-**11c** and a mixture of *cis*-**11c** and **15c**. A mixture of *cis*-**11c** and **15c** was treated with DIBAL-H in THF at –78 °C for 1 h to give the crude alcohols. Chromatography of the crude alcohols with CH₂Cl₂–Et₂O (10:1) afforded *cis*-**11c'** and **15c'**. The stereochemistries of *trans*-**11c** and *cis*-**11c'** were verified by diagnostic ¹H NOE correlation shown in Figure 1.

Methyl (3a*R**,4*R**,9b*R**)-6,9-bis(benzenesulfonyl)-2,3,3a,4,5,9b-hexahydro-1*H*-benz[*e*]indene-4-carboxylate (*trans*-11c). Colorless powder: m.p. 196-198 °C (CHCl₃–hexane); IR 1732, 1447, 1445, 1383, 1308 cm⁻¹; ¹H NMR (270 MHz, [D6]acetone) δ 8.23 (1H, d, *J* = 8.6 Hz), 8.02-7.72 (11H, m), 3.80 (3H, s), 3.53 (1H, dd, *J* = 18.2, 5.6 Hz, C5-Hb), 3.38 (1H, dd, *J* = 18.2, 11.2 Hz, C5-Ha), 3.24-3.13 (1H, m, C9b-H), 3.07-2.96 (1H, m), 2.69 (1H, ddd, *J* = 11.2, 11.2, 5.6 Hz, C4-H), 1.90-1.25 (6H, m); ¹³C NMR (67.8 MHz, [D6]acetone) δ 174.9, 146.3, 144.2, 143.5, 142.2, 139.4, 134.8, 134.7, 130.4, 129.0, 128.9, 128.5, 128.0, 51.9, 47.7, 47.4, 43.4, 33.1, 32.4, 27.8, 22.4; MS m/z 510 (M⁺, 3.1). Anal. Calcd for C₂₇H₂₆O₆S₂: C, 63.51; H, 5.13. Found: C, 63.29; H, 5.02.

(3a*R**,4*S**,9b*S**)-6,9-Bis(benzenesulfonyl)-4-hydroxymethyl-2,3,3a,4,5,9b-hexahydro-1*H*-benz[*e*]indene (*cis*-11c'). Colorless solid: m.p. 149-151 °C (CHCl₃–hexane); IR 3537, 1448, 1398, 1308, 1223 cm⁻¹; ¹H NMR (500 MHz, C_6D_6) δ 8.04 (1H, d, *J* = 8.5Hz), 7.95 (1H, d, *J* = 8.5 Hz), 7.70-7.62 (4H, m), 6.92-6.80 (6H, m), 3.83 (1H, dd, *J* = 19.5, 8.8 Hz, C9b-H), 3.72 (1H, dd, *J* = 15.9, 2.7 Hz, C5-H), 2.86-2.85 (1H, m, *CH*HOH), 2.58-2.53 (1H, m, *CHHOH*), 2.25 (1H, dd, *J* = 15.9, 4.2 Hz, C5-H), 2.08 (1H, brs, OH), 1.95-1.90 (1H, m), 1.68-1.58 (2H, m), 1.44-1.39 (1H, m, C3a-H), 1.26-1.22 (1H, m), 1.20-1.11 (1H, m), 1.04-0.97 (1H, m), 0.71-0.62 (1H, m); ¹³C NMR (125 MHz) δ 144.8, 144.3, 143.4, 140.9, 140.0, 138.4, 133.9, 133.7, 129.5, 129.3, 127.9, 127.5, 127.3, 126.1, 64.0, 42.2, 39.6, 36.7, 35.2, 34.2, 25.5, 24.9.

(2*E*,6*E*)-7-[3,6-Bis(benzenesulfonyl)-2-methylphenyl]-2,6-heptadien-1-ol (15c'). Colorless oil: IR 3443, 1447, 1383, 1352, 1310, 1219 cm⁻¹; ¹H NMR (500 MHz) δ 8.35-8.27 (2H, m), 7.87-7.85 (2H, m), 7.75-7.74 (2H, m), 7.63-7.29 (6H, m), 6.27 (1H, d, *J* = 16.4 Hz), 5.67-5.61 (2H, m), 5.17-5.13 (1H, m), 4.10-4.07 (2H, m), 2.33 (3H, s), 2.14 2.11 (4H, m); ¹³C NMR (125 MHz) δ 144.4, 143.9, 141.1, 140.7, 139.1, 138.7, 133.7, 133.4, 131.4, 130.0, 129.3, 128.8, 128.03, 127.95, 127.91, 127.8, 126.6, 123.6, 63.5, 32.6, 30.8, 17.6; FABMS *m*/*z* 505 (M⁺+Na, 43.6); FABHRMS calcd for C₂₆H₂₆O₅S₂Na 505.1119, found 505.1123.

Figure 1. NOE data for trans-11c and cis-11c'

dl-Estra-1,3,5(10)-trien-17-one (23). To a solution of 22 (23.2 mg, 8.10 x 10^{-2} mmol) and Et₃N (0.08 mL, 0.6 mmol) in THF (7.0 mL) was gradually added a solution of PhSCl (70.0 mg, 0.486 mmol) in THF (1.1 mL) at room temperature. After the mixture was stirred at that temperature for 0.5 h, the reaction mixture was refluxed for 17 h. The reaction was quenched with water, and the

mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with hexane–AcOEt (1:2) to afford the crude sulfoxide. To a solution of the crude sulfoxide (26.0 mg) in THF (1.0 mL) was added Raney-Ni (W-2, excess) at room temperature. After being stirred at reflux temperature for 1 d, the mixture was filtered and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (9:1) afforded **23** (6.6 mg, 32%) as a colorless solid: IR 2961, 2928, 2855, 1746 cm⁻¹; ¹H NMR (270 MHz) δ 7.32-7.29 (1H, m), 7.24-7.08 (3H, m), 2.95-2.90 (2H, m), 2.51 (1H, dd, *J* = 18.4, 8.0 Hz), 2.45-2.28 (2H, m), 2.22-1.94 (4H, m), 1.68-1.30 (6H, m), 0.91 (3H, s).

Preparation of 26. To a solution of 24 (37.2 mg, 0.200 mmol) in THF (3.0 mL) were successively added dimethyl fumarate (60.0 mg, 0.420 mmol), Et₃N (0.20 mL, 1.4 mmol), and a solution of PhSCl (175 mg, 1.20 mmol) in THF (0.5 mL) at -78 °C. After being stirred for 1.5 h, the reaction mixture was allowed to warm to room temperature. After 2.5 h, the reaction was quenched by addition of water, and the mixture was extracted with AcOEt. The extract was washed with water and brine, dried, and concentrated to dryness. The residue was passed through a short pad of silica gel with CH₂Cl₂-Et₂O (10:1) to afford the crude sulfoxide (92.6 mg). To a solution of 67.9 mg of the crude sulfoxide in CH₂Cl₂ (1.2 mL) was added mCPBA (82.8 mg, 0.480 mmol) at 0 °C, and the reaction mixture was allowed to warm to room temperature. After 25 h, the reaction was quenched by addition of saturated aqueous $Na_2S_2O_3$ and aqueous NaHCO₃, and the mixture was extracted with CH₂Cl₂. The extract was washed with water and brine, dried, and concentrated to dryness. Chromatography of the residue with hexane-AcOEt (2:1) gave 26 (68.5 mg, 84%) as a pale yellow solid: IR 1732, 1325, 1148 cm⁻¹; ¹H NMR (270 MHz) δ 9.07-8.90 (2H, m), 7.95-7.82 (4H, m), 7.66-7.42 (8H, m), 3.85-3.73 (4H, m), 3.65 (6H, s), 3.24-3.07 (2H, m); ¹³C NMR (67.8 MHz) δ 173.8, 143.2, 140.8, 138.5, 133.3, 129.8, 129.3, 127.6, 126.1, 125.4, 52.4, 40.1, 28.2; MS m/z 578 (M⁺, 3.9). HRMS calcd for $C_{30}H_{26}O_8S_2$ 578.1069, found 578.1064.

Reference

1) A. G. M. Barrett, D. Dhanak, G. G. Graboski, S. J. Taylor, Org. Syn. 1990, 68, 8–12.

S6

S8

